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Abstract—The class of Gupta-Kumar results give the asymp-
totic throughput in multi-hop wireless networks but cannot
predict the throughput behavior in networks of typical size.
This paper addresses the non-asymptotic analysis of the multi-
hop wireless communication problem and provides, for the first
time, closed-form results on multi-hop throughput and delay
distributions. The results are non-asymptotic in that they hold
for any number of nodes and also fully account for transient
regimes, i.e., finite time scales, delays, as well as bursty arrivals.
Their accuracy is supported by the recovery of classical single-
hop results, and also by simulations from empirical data sets
with realistic mobility settings. Moreover, for a specific network
scenario and a fixed pair of nodes, the results recover Gupta-
Kumar’s Θ

(
1/

√
n logn

)
asymptotic scaling law.

I. INTRODUCTION

The problem of multi-access communication is about the
understanding of the fundamental performance limits of com-
munication in multi-hop wireless networks. Metrics of interest
include network capacity, referring to the maximal data rates
which can be reliability sustained by the network, and network
delay.

The classical information theory approach to the network
capacity problem has two main drawbacks: it provides so-
lutions only for a small class of topologies (e.g., Shannon’s
two-node model), and it ignores the fundamental aspects of
data burstiness and delay characteristic to packet switching
networks [15]. A more recent approach which ignores multi-
user coding schemes, as in the work of Gupta and Kumar [18],
provides solutions in asymptotic form. Although such results
permit the understanding of how network capacity scales in the
number of nodes, they are unable to predict the exact capacity
in networks of typical size, and are thus being questioned on
their practicality [3]. As far as the network delay problem is
concerned, this is in itself a fundamentally difficult problem
even in wired networks where solutions are limited to product-
form networks [23].

This paper proposes a stochastic network calculus approach
to analyze the performance of multi-hop wireless networks
from a non-asymptotic point of view. Concretely, the paper
considers networks of any size, accounts for the burstiness
and delay aspects of data networks, and also encompasses
the notion of time scales for transient analysis; these aspects
were recently posed as a challenge for the development of a
functional network information theory [4]. The contribution
of this paper consists in the derivation of explicit and non-
asymptotic bounds on throughput and delay distributions over
a multi-hop path in a wireless network. For a specific network

scenario the results recover Gupta-Kumar’s Θ
(
1/
√
n log n

)
asymptotic scaling law for a fixed pair of nodes. Other con-
sequences include the recovery of classical results on single-
hop throughput averages and a sufficient part of a stability
condition conjectured in [32]. Simulations from an empirical
data set with realistic mobility settings further indicate the
accuracy of the distribution results.

A. Solution’s Generality and Overview

The network model considers both static and random
topologies by representing the number of nodes contending for
the same channel by a distribution function. This node density
model accounts for mobility and random node placement,
and is supported by empirical data with realistic mobility
settings. The paper considers the total delay comprising both
the queueing delay due to arrival burstiness and the access
delay due to multi-access [13]; also, the paper applies to the
broad class of bursty arrivals with finite moment generating
functions (MGFs). The network model assumes the existence
of a multi-hop path at the network layer. Although the paper
is restricted to the slotted-Aloha MAC protocol [1] and does
not explicitly consider SINR and network scheduling (there is
no queueing at the nodes due to scheduling), it shows how
to extend the analysis to account for such aspects and other
MAC protocols. The results on throughput and delays are
mathematically rigorous in that they do not involve simplifying
assumptions, commonly made in the literature for technical
reasons (e.g., statistical independence), but they fully address
the difficult problem of spatial-time correlations arising in
multi-hop communication.

The analysis in this paper follows the approach of the
stochastic network calculus [9], [21], which is a probabilistic
extension of the deterministic network calculus conceived by
Cruz [12]. The main features of the calculus relevant to the
analysis in this paper are 1) service abstraction (i.e., the
characterization of the exclusive service received by network
nodes due to contention at the MAC layer) and 2) multi-node
analysis as a relatively straightforward extension of single-
node analysis by using (min,+) algebra operations.

B. Related Work

Results on throughput and delays in multi-access networks
are mostly restricted to averages, specific arrivals, or single-
hop scenarios, whereas multi-hop results rely on simplifying
technical assumptions. Throughput averages were derived in
both static [2], [5] and random [24] networks. Queueing



delay averages were derived in a scenario with two identical
nodes [28], [30]; an approximation analysis for more than
two nodes was considered in [13]. Access delay distributions,
restricted to Bernoulli or Poisson processes, were derived in
terms of z-transforms [31] and in explicit form [35]. Multi-
hop throughput averages were obtained by decomposing the
network into single-hop links and deriving the local through-
puts using a set of fixed-point equations [16]. The total
delay in a single line multi-hop network was derived using
simplifying independence assumptions to deal with the spatial-
time correlations [33].

As far as network capacity results are concerned, the pure
information theory approach produced partial solutions in
network size [15]. In an attempt to simplify the problem,
Gupta and Kumar considered certain ideal assumptions on
power-control, routing, or scheduling, and also dispensed with
multi-user coding schemes [18], and obtained the network
capacity’s order of growth in the number of nodes n: the
per-node capacity scales as Θ(1/

√
n) in arbitrary networks

and as Θ
(
1/

√
n log n

)
in random networks. The latter result

can also be viewed as a consequence of an earlier result
of Kleinrock and Sylvester [24] by letting the number of
neighbors scale as Θ(logn), instead of Θ(1), which guarantees
network connectivity with probability one [34].

Necessary and sufficient stability conditions in Aloha multi-
access networks exist in explicit form only for two nodes [32].
In scenarios with more than two nodes solutions are exact and
recursive [29], or approximative and asymptotically exact [6].

The rest of the paper is structured as follows. Section II
describes the single-hop wireless network model and the main
analytical tools. Section III applies these tools to derive single-
hop per-node throughput and delay distributions, and also
stability conditions. Further extensions to the multi-hop case
are considered in Section IV. Brief conclusions are presented
in Section VI.

II. NETWORK MODEL AND ANALYTICAL TOOLS

In this section we describe the wireless network model
and the main analytical tools used for throughput and delay
analysis. One such tool is the interfering process model for
successful transmissions of a node running a MAC protocol.
From this interfering process we then construct a node’s ser-
vice curve which provides a lower bound on the amount of the
node’s successful transmissions as a function of time. Finally
we describe two density models capturing the randomness of
the number of nodes within a contention region.

For the single-hop analysis we consider that the number
of nodes is a random process N(t). All the nodes hear each
other, share a single communication channel, and all run the
slotted-Aloha MAC protocol (the multi-hop scenario will be
considered in Section IV). We are interested in the throughput
and delay analysis for a fixed node A transmitting to some
arbitrary node D, whenever N(t) > 1. We assume that all
the nodes except for A are saturated (always backlogged),
e.g., having infinite arrivals. In turn, the node A can be either
saturated or not; the latter situation corresponds to the case of

bursty arrivals. The node A has an infinite sized buffer such
that in the case of bursty arrivals the model accounts for total
(queueing plus access) delay.

We use an underlying discrete time model with incre-
ment ∆t representing the transmission time of one data unit
(packet). For each slot (t, t + ∆t], each node transmits with
probability pN(t) depending on N(t); when N(t) = 1 we let
p1 = 0, i.e., no transmissions. The communication channel
offers a maximal service rate of one packet per one time unit,
such that at most ∆t aggregate throughput can be achieved
by all the nodes during (t, t + ∆t]. We also use continuous
time approximations—in order to simplify computations with
differential calculus—when the time scale of interest is large,
e.g., when computing the asymptotic (long-term) throughput.

For this network model we are interested in two perfor-
mance metrics. The first is A’s throughput for both transient
(i.e., time dependent) and asymptotic regimes. Formally, in the
case when A is saturated, the transient throughput refers to the
maximal rates λt such that for all t ≥ 0

Pr
(
D(t) ≤ λtt

)
≤ ε , (1)

where D(t) denotes the cumulative departure process at node
D (more exactly the number of packets received exclusively
from A by time t) and ε is some fixed violation probability,
e.g., ε = 10−3. In other words, λt represents a probabilistic
lower bound on A’s achievable throughput by time t.

The other metric is A’s delay process which we consider
only in the case of bursty arrivals, denoted by the cumulative
process A(t). The delay process is denoted by W (t) = inf{d :
A(t− d) ≤ D(t)}, i.e., W (t) represents the delay of the last
packet successfully transmitted by time t. In particular we look
for probabilistic delay bounds d satisfying

Pr
(
W (t) > d

)
≤ ε , (2)

for some violation probability ε. Note that A’s delay process
is meaningless when A is saturated.

A. Interfering Process and Service Curve Representation

The next definition introduces the key analytical tool used
in this paper, i.e., the interfering process of a node. Let us
assume for now that all the nodes are saturated.

Definition 1: The virtual interfering process V (t) of a node
A is defined by its Bernoulli increment process V (t, t+∆t) :=
V (t+∆t)− V (t) as

V (t, t+∆t) =

 0 ,
if A successfully transmits

during (t, t+∆t]

∆t , otherwise .
(3)

The probabilities are for qN(t) := 1− pN(t)(1− pN(t))
N(t)−1 Pr

(
V (t, t+∆t) = 0

)
= 1− qN(t) , and

Pr
(
V (t, t+∆t) = ∆t

)
= qN(t) .

(4)

The cumulative interfering process V (t) can be written as
V (t) =

∑⌈t/∆t⌉−1
s=0 V (s, s+∆t) and accounts for the amount



of time when A cannot successfully transmit, i.e., either when
at least one node other than A transmits or the channel is idle.
Consequently, t−V (t) represents A’s throughput during [0, t].
Note that in the single-hop scenario V (t) depends on all the
nodes in the transmission range of A. In multi-hop scenarios,
V (t) would additionally depend on the hidden nodes of A
relative to D.

From this interfering process we next construct a service
curve for node A. A service curve is a key network calculus
concept modelling a lower bound on how much A can transmit
as a function of time. If A’s arrival process is also known
then standard calculus techniques yield bounds on throughput
and delay distributions. The benefits of relying on service
curves will become more obvious when analyzing multi-hop
scenarios: the fundamentally hard problem of deriving end-to-
end results is elegantly solved by service curves convolution.

Formally, a bivariate random process S(s, t) is a (probabilis-
tic) service curve for node A if for all arrival and departure
processes A(t) and D(t), respectively, and all times t ≥ 0 [9]

D(t) ≥ A ∗ S(t) . (5)

Here, ‘∗’ is the (min,+) convolution operator defined as A ∗
S(t) = inf0≤s≤t {A(s) + S(s, t)}.

Fig. 1. Interpretation of A’s service at a SP scheduler with service rate 1;
the virtual interfering process V (t) has the highest priority.

In order to construct a service curve S(s, t) for node A,
in the considered single-hop network scenario, we interpret
A’s service in the following way (see Figure 1). A server of
capacity one serves two arrival flows: one is A(t) and the
other is the (virtual) arrival process V (t) from Definition 1.
The critical observation is that the arrivals of V (t) receive
higher priority. In other words, we interpret A’s service as if
its arrivals were served at a static priority scheduler which
gives higher priority to the interfering process. Using this
interpretation, a service curve for A is [14]

S(s, t) = t− s− V (s, t) , (6)

which is referred to as a leftover service curve, since it
expresses the capacity left unused by V (t).

In turn, if A is not saturated, then Eq. (5) still holds with
S(s, t) from Eq. (6). Indeed, for some t ≥ 0, one may take s∗

as the beginning of the last busy period of A before t. This
means that A(s∗) = D(s∗) and A has always data to serve
during (s∗, t], which yields D(t) = A(s∗)+ t− s∗−V (s∗, t).

For understanding the correctness of the follow-up results,
we can now make the critical observation that S(s, t) is sta-
tistically independent of any arrival process A(t) which may
induce unsaturated situations, as long as A(t) is independent
of the Aloha protocol. Note that the only source of randomness
in Eqs. (3) and (4) stems from the MAC protocol.

For a brief check-up of the accuracy of this service curve
construction, let us consider a fixed number of nodes N(t) = n
and probability pN(t) = p. If A is saturated then S(s, t) is a
strict service curve [7] for A(s, t), i.e., D(s, t) ≥ S(s, t) for
all 0 ≤ s ≤ t. Taking expectations yields

E [D(s, t)] ≥ t− s− E [V (s, t)] = p(1− p)n−1(t− s) .

Optimizing p = 1
n we get that the rate of D(s, t) approaches

1
ne when n is sufficiently large. This is exactly the normalized
maximal throughput in a slotted-Aloha network [24].

B. Density Models
Our network calculus analysis needs the MGF of the inter-

fering process V (t) from Definition 1, i.e.,

Mt(θ) = E
[
eθV (t)

]
,

for some θ > 0. We use the shorthand Mt for Mt(θ). Note
that V (t) is modulated by the process N(t) which represents
the number of nodes interfering with node A.

In this subsection we derive Mt for two density models
of N(t), depending whether the process has memory or not.
The first model assumes that N(t) is a Markov chain and
is suitable in mobile scenarios. The second model assumes
that N(t) is memoryless, i.e., N(t) is independent of N(s)
for all s < t. This model is suitable in static scenarios with
random node placement, e.g., if nodes are uniformly placed
within an area, as in [18], then N(t) has the the binomial
distribution or its Poisson approximation. The memoryless
model can be derived from the conflict graph model for
capturing interference from [20], by letting N(t) represent the
node-degree of the graph. Also, given mobility models used
in the literature (see [25] for a survey), the distribution of
N(t) can be in principle derived from the initial state and the
mobility description.

1) Markov-Modulated Interfering Process: Here we con-
sider that V (t) is a Markov-modulated interfering process, i.e.,
N(t) is a continuous Markov process. The process V (t) inter-
feres with rate one and probabilities depending on the current
state (see Eqs. (3) and (4)). We restrict the Markov chain to
n states, i.e., the node A can interfere with at most n − 1
other nodes. Also, we make the simplification that transitions
exist only between consecutive states; the transitions between
states i and i+ 1 are denoted by αi and βi, respectively, for
i = 1, . . . , n − 1. By convention we set αn = 0 and β0 = 0.
The time spent in state n is exponentially distributed with
mean 1/(αn + βn−1). The chain guarantees the existence of
the stationary steady-state distribution π = (π1, . . . , πn), with
πi = limt→∞ Pr (N(t) = i).

The value of Mt can be computed (not shown here) using
standard techniques based on conditioning (see [11]). We
obtained the continuous time approximation

E
[
eθV (t)

]
≤ eλnt , (7)

where, by convention, λn = maxi λi is the spectral radius of a
tridiagonal matrix depending on the Markov chain parameters
and transmission probabilities.



2) Memoryless-Modulated Interfering Process: We now
consider that N(t) is memoryless with the stationary distri-
bution π = (π1, . . . , πn), with πi = Pr (N(t) = i). This
simplified model has the advantage of being amenable to
an easier mathematical analysis. Using conditioning, one can
derive the MGF

E
[
eθV (t)

]
=
(
1 + q

(
eθ − 1

))t
, (8)

where q =
∑

i πiqi and qi = 1−pi(1−pi)
i−1. Also, one may

obtain the continuous time approximation

E
[
eθV (t)

]
= eθqt . (9)

We note that the continuous time approximations of the MGF
of V (t) from Eqs. (7) and (9), which have the advantage
of having simpler expressions than in discrete time, are to
be used in asymptotic regimes where the continuous time
approximation has negligible effects.

III. THROUGHPUT AND DELAY ANALYSIS. THE
SINGLE-HOP CASE

In the next two subsections we compute bounds on the
distribution of A′s throughput and delay.

A. Saturated Case. Throughput Analysis

When A is saturated we determine lower bounds on the
achievable throughput λt defined in Eq. (1).

Theorem 1: (TRANSIENT AND ASYMPTOTIC THROUGH-
PUT) Let the memoryless interfering process from Subsec-
tion II-B2. Denote qi = 1 − pi (1− pi)

i−1 and q =
∑

i πiqi.
A lower bound on the transient throughput is

λt = sup
p,θ

{
1− log b

θ
+

log ε

tθ

}
, (10)

where b = 1 + q
(
eθ − 1

)
, p = (p1, . . . , pn) is the vector

of transmission probabilities, and ε is some fixed violation
probability. A lower bound on the asymptotic throughput is

lim
t→∞

λt := λ = sup
p

{1− q} . (11)

Similar bounds can be derived for the Markov-modulated
interfering process from Subsection II-B1. For instance, a
bound on the asymptotic throughput is as in Eq. (11) with q
replaced by λn

θ , where λn is the spectral-radius from Eq. (7).
PROOF. We can assume without loss of generality that

A(s, t) ≥ t−s for all s ≤ t, such that the node A is saturated.
Using the definition of the service curve from Eq. (5) and the
Chernoff bound for some θ > 0, we can write for all t ≥ 0

Pr (D(t) ≤ tλt) ≤ Pr
(
inf
s
{A(s) + S(s, t)} ≤ tλt

)
≤ Pr (V (t) ≥ t(1− λt)) ≤ E

[
eθV (t)

]
e−θ(1−λt)t . (12)

To derive the throughput λt for finite time scales we use
the MGF of V (t) from Eq. (8) and get

Pr (D(t) ≤ tλt) ≤
(
be−θ(1−λt)

)t
.

Equating the right-hand side to some ε > 0, we obtain the
expression from Eq. (10).

In turn, the direct way to derive the asymptotic throughput
λ is to take the limit in t in Eq. (10) and use that f(θ) =
log(1+q(eθ−1))

θ is non-increasing for θ ≥ 0 and q ≤ 1, whereas
limθ→0 f(θ) = q. An alternative way is to use the continuous
time approximation of the MGF of V (t) from Eq. (9) and
continue Eq. (12) as Pr (D(t) ≤ tλt) ≤ e−θ(1−q−λt)t. From
here we obtain the bound λt = 1− q − x for all x > 0, since
the probability converges to 0 as t → ∞. Letting x → 0 yields
Eq. (11). �

B. Unsaturated Case. Stability and Delay Analysis

When A is not saturated we determine the maximal arrival
rate r of A(t) such that the probability

Pr
(
D(t) ≤ A(t)− σ

)
decays to zero in σ. This value provides a bound on A’s rate to
ensure stability. We also compute probabilistic upper bounds
on the distribution of the delay process W (t) as in Eq. (2).

Theorem 2: (STABILITY CONDITION. DELAY BOUNDS)
Let the memoryless interfering process from Subsection II-B2,
and assume that the arrival process A(t) is Poisson with
mean rt. Denote qi = 1 − p(1 − p)i−1, q =

∑
i πiqi, and

b = 1 + q
(
eθ − 1

)
. A bound on the maximal arrival rate of

node A preserving stability is

r ≤ sup
p,θ>0

{
1

eθ − 1
log

eθ

b

}
, (13)

where p = (p1, . . . , pn) is the vector of transmission proba-
bilities. For r and θ satisfying this bound we have the delay
bound for all d ≥ 0

Pr (W (t) > d) ≤ Me−θ(1− log b
θ )d , (14)

where M = e
−θ

(
1− log b

θ −r eθ−1
θ

)
.

Note that the throughput can be computed as in Theorem 1.
PROOF. Using Eq. (5) we have for t, σ ≥ 0

Pr (D(t) ≤ A(t)− σ)

≤ Pr

(
sup

0≤s≤t
{A(s, t)− t+ s+ V (s, t)} ≥ σ

)
. (15)

To bound the sample-path probability we follow [10]. First
note that the processes A(s, t) and V (s, t) are statistically
independent, since the definition of V (t) is independent of
the actual arrival process A(t). Let r, θ > 0 such that

E
[
eθ(A(1)+V (1)−1)

]
= be

θ
(
r eθ−1

θ −1
)
≤ 1 ,

i.e., the condition from Eq. (13). Then, using the independent
increments property of the processes A(s, t) and V (s, t), it
can be shown that the process T (s) = eθ(A(t−s,t)+V (t−s,t)−s)

is a supermartingale relative to the filtration of σ-algebras
Fs = σ {A(t− s, t), V (t− s, t)}. Formally it means that
E [T (s+ 1)|Fs] ≤ T (s), i.e., the mean value at time s + 1
conditioning on the past is smaller than the value at time



s [17]. We can continue Eq. (15) using Doob’s maximal
inequality [17] yielding

Pr (D(t) ≤ A(t)− σ) ≤ Pr

(
sup
s

Ts ≥ σ

)
≤ e−θσ ,

which proves the claim on the throughput. The proof for
the delay bound follows from similar network calculus argu-
ments. �

In the theorem, Eq. (13) provides a sufficient condition for
stability from A’s perspective, as it is obtained by assuming
that the other nodes are saturated. In the case of a static
scenario with a fixed number of nodes N(t) = n, and where
each node transmits according to slotted-Aloha with fixed
probability pi, the condition becomes

r ≤ sup
θ>0

 1

eθ − 1
log

eθ

1 +
(
1− p1

∏
j ̸=1 (1− pj)

)
(eθ − 1)


= p1

∏
j ̸=1

(1− pj) , (16)

assuming that node A is the first node. This stability condition
recovers the sufficiency part of the classical conjecture on
Aloha’s stability from [32], which can be thus extended to
networks with random topologies.

The derived stability condition can also be extended to
arrival processes with finite MGFs. To see this, assume for
instance that there exists a rate r, depending on a parameter
θ > 0, such that E

[
eθA(t)

]
≤ eθrt. Following the proof and

using Eq. (9) and eθE[A(t)] ≤ E
[
eθA(t)

]
(Jensen’s inequality),

the stability condition from Eq. (13) becomes E [A(t)] ≤ 1−q;
this recovers Eq. (16) in the case of a static scenario. Similarly,
the delay bounds can be extended as well to arrival processes
with finite MGFs. The Poisson assumption from the theorem
is not critical but only enables the derivation of sample-path
bounds using the supermartingale argument which simplifies
notation and sharpens the bounds; in the case of more gen-
eral arrival processes, such sample-path bounds involve the
computation of a sum [9], [14].

IV. THROUGHPUT AND DELAY ANALYSIS. THE
MULTI-HOP CASE

Fig. 2. A network of n = m(1+ (1−ϕ)k) fixed nodes; each circle has m
nodes and the intersection of any two circles has ϕm nodes. We are interested
in the throughput and delay analysis of node 1 transmitting to node k + 1
using the nodes 2, 3, . . . , k as relays.

To keep the notation simple we consider the static network
topology from Figure 2. Node 1 transmits to node k+1 using
nodes 2, 3, . . . , k as relays; moreover, nodes 2, 3, . . . , k receive
data only from their predecessors, so that a single flow transits

each. The k+1 circles from the figure represent the interfering
ranges (for simplicity identical to the transmission ranges) of
the k+1 nodes. We assume that each circle contains m nodes,
and the intersection of any two circles contains ϕm nodes,
where 0 < ϕ ≤ .5; we omit the details when ϕm is not
integer. The network has thus a total of n = m(1+ (1−ϕ)k)
nodes.

As in the single-hop network model from Section II, we
assume that the wireless communication channel offers a
maximal service rate of one packet per one time unit. All the
nodes run the slotted-Aloha protocol with time unit ∆t = 1.
The transmission probability of each node is p. All the nodes
except for 1, 2, . . . , k + 1 are saturated; when computing
the end-to-end throughput the node 1 is also saturated. For
convenience we denote a direct transmission from node i to
node j by [i → j].

The fundamental difficulty of an end-to-end throughput
and delay analysis, in contrast to the single-hop analysis,
is represented by the correlated transmissions involving the
relaying nodes. For instance, the transmissions [1 → 2] and
[2 → 3] are correlated through the behavior of the ϕm
nodes located within the intersection of the first two circles.
Additionally, the analysis must consider that the transmissions
[i → i+1] cannot take place unless there is positive backlog at
node i, for i = 2, 3, . . . , k. In the rest of this section we will
show that the leftover service curves constructed in Eq. (6)
lead to a clean solution for the end-to-end analysis, without
relying of simplifying technical assumptions.

Let us first recall that the interfering process V1(t) of node
1 must account not only for the nodes within the circle of
node 1, but also for the hidden nodes relative to node 2, i.e.,
(1− ϕ)m additional nodes. Also, let the following equivalent
representation of the interfering process from Eqs. (3) and (4),
i.e.,

V (t, t+ 1) = 1−X1(t)

N(t)∏
i=2

(1−Xi(t)) , (17)

where Xi(t) are i.i.d. Bernoulli random variables B(p), i.e.,
with probability p take value ∆t, and with probability 1 − p
take value 0. Then the interfering process V1(s, t), written here
in bivariate form V1(s, t) := V1(t)−V1(s), is for all 0 ≤ s ≤ t

V1(s, t) = t− s−
t∑

u=s+1

X1(u)

m(2−ϕ)∏
i=2

Xi(u) , (18)

where Xi(u) are i.i.d. Bernoulli random variables B(p). The
interfering processes Vj(t) of nodes 2, 3, . . . , k have similar
expressions. For instance, in the case of node 2,

V2(s, t) = t− s−
t∑

u=s+1

Y1(u)

m(2−ϕ)∏
i=2

Yi(u) , (19)

where Yi(u) are i.i.d. B(p) random variables. As re-
marked before the sets {X1(u), X2(u), . . . , X(2−ϕ)m(u)} and
{Y1(u), Y2(u), . . . , Y(2−ϕ)m(u)} have in common ϕm random
variables which correlate the transmissions [1 → 2] and
[2 → 3].



Having the interfering processes, the leftover service curves
Si(s, t) modelling lower bounds on the transmissions [i →
i+ 1] follow directly from Eq. (6) for all i = 1, 2, . . . , k. For
instance, in the case of node 1,

S1(s, t) =
t∑

u=s+1

X1(u)

m(2−ϕ)∏
i=2

Xi(u) . (20)

Furthermore, by applying the concatenation result from net-
work calculus [9], it follows that the bivariate process

S(s, t) = S1 ∗ S2 ∗ . . . ∗ Sk(s, t)

= inf
s≤u1≤···≤uk−1≤t

{S1(s, u1) + · · ·+ Sk(uk−1, t)} (21)

is a network service curve for the end-to-end transmission
[1 → 2 → · · · → k + 1]. This process essentially models a
lower bound on the available end-to-end service by capturing
the interferences at all the relay nodes.

A critical observation for our further analysis is that
for fixed u1, u2, . . . , uk−1, the (random) processes
S1(s, u1), S2(u1, u2) , . . . , Sk(uk−1, t), and implicitly
V1(s, u1), V2(u1, u2), . . . , Vk(uk−1, t) are statistically inde-
pendent. In particular, note that V1(s, u1) and V2(u1, u2) from
Eqs. (18) and (19) are independent because their expressions
do not share any random variables: the intervals (s, u1] and
(u1, u2] are disjoint, whereas the randomization process in
slotted-Aloha is memoryless (e.g., Xi(u + 1) is independent
of Xi(u) in Eq. (18)).

We are now ready to provide the results on the end-to-end
throughput and delay distributions, and stability.

Theorem 3: (TRANSIENT AND ASYMPTOTIC THROUGH-
PUT; STABILITY CONDITION; DELAY BOUNDS) Consider the
network scenario from Figure 2. Denote q = 1 − p(1 −
p)m(2−ϕ)−1. If the node 1 is saturated then a lower bound
on the transient multi-hop throughput, as defined in Eq. (1),
is for all t ≥ 0

λt = sup
p,θ

{
1− log b

θ
+

log ε

tθ
−
(
t+k−2
k−1

)
tθ

}
, (22)

where b = 1 + q
(
eθ − 1

)
and ε is some fixed violation

probability. A lower bound on the asymptotic throughput
λ := limt→∞ λt is

λ = 1− q . (23)

In turn, if the arrival process A(t) at node 1 satisfies
E
[
eθA(t)

]
≤ eθrt, for some r > 0, depending on θ, a bound

on the maximal arrival rate of A preserving stability is

r ≤ sup
θ>0

{
1− log b

θ

}
. (24)

For r and θ satisfying this bound we have the delay bound for
all d ≥ 0

Pr (W (t) > d) ≤

 1

θ
(
1− log b

θ − r
)
k

e−θ(1− log b
θ )d .

(25)

The formulas in the theorem are very concise because of
the perfect symmetry in the k+1 circles from Figure 2 (e.g.,
m nodes in all circles, same transmission probabilities for all
nodes); in asymmetric scenarios the corresponding formulas
would increase in notation.

With respect to throughput, Eq. (22) differs from the single-
hop parallel result from Theorem 1 (restricted to slotted-Aloha
for a static network with same transmission probabilities for
all nodes) by the last term involving the binomial factor;
this factor depends both on time and the number of hops.
Moreover, optimizing Eq. (23) with p = 1

m(2−ϕ) we obtain
the end-to-end asymptotic throughput

λ =
1

m(2− ϕ)e
, (26)

which is independent of the number of hops and represents the
normalized asymptotic throughput in a slotted-Aloha network
with m(2− ϕ) nodes.

With respect to the stability condition, Eq. (24) is slightly
weaker than the single-hop condition from Eq. (13) in that
it is obtained using a summation argument, rather than the
stronger supermartingale argument used in Theorem 1. A
simple inspection into Eq. (24) reveals the natural condition
that r ≤ λ, with λ from Eq. (26). Stronger conditions
can be further derived by considering different transmission
probabilities at the nodes, as in Theorem 2.

On the other hand, an inspection into the delay bound from
Eq. (25) reveals that the end-to-end delay quantiles d(ε) scale
as Θ(k) in the number of hops, Θ(m) in the number of nodes
m within a circle, and also Θ(1− ϕ) in the fraction of nodes
ϕ within an intersection.

Before giving the proof we also mention that the results in
the theorem can be easily extended to a random scenario with
N(t) nodes within each circle. Under symmetric conditions,
as pointed out earlier, the formulas in the theorem would still
hold with q replaced by the weighted average

∑
i πiqi, as in

Theorem 2.
PROOF. Denote A(t) the arrivals at node 1 and D(t) the

departures at node k + 1. Following the proof of Theorem 1
we assume that A(s, t) ≥ t − s for all s ≤ t. Following
the derivation of Eq. (12), but with the network service curve
S(s, t) from Eq. (21), we can write for all t ≥ 0

Pr (D(t) ≤ tλt) ≤ Pr

(
inf

0<s≤t
{A(s) + S(s, t)} ≤ tλt

)
≤ Pr

(
sup

1≤u1≤···≤uk−1≤t

k∑
l=1

Vl(ul−1, ul) ≥ t(1− λt)

)
≤

∑
1≤u1≤···≤uk−1≤t

E
[
θ
∑k

l=1 Vl(ul−1,ul)
]
e−θtλt

≤
∑

1≤u1≤···≤uk−1≤t

L =

(
t+ k − 2

k − 1

)
L ,

where L =
(
be−θ(1−λt)

)t
, u0 = 0 and uk = t. In the third

line we applied the Chernoff bound for some θ > 0. Then we
used the independence of the processes Vl(ul−1, ul); recall the



explanation after Eq. (21). Finally, the binomial term
(
t+k−2
k−1

)
is the number of combinations with repetition. In turn, to show
the asymptotic rate, we can apply the Stirling’s approximation
for the factorial, and obtain that

(
t+k−2
k−1

)
/(tθ) → 0 as t → ∞.

The rest of the proof follows as in the proof of Theorem 1 and
using network calculus arguments (see for instance [14]). �

A. Further Extensions

Here we make some remarks on how to further extend the
methodology from this paper to take into account other MAC
scheduling algorithms, the noise at the physical layer, schedul-
ing at the network layer, and also the ability of Theorem 3 to
recover Gupta-Kumar’s scaling law for the (specific) network
considered in Figure 2.

For other MAC scheduling algorithms, such as 802.11 DCF,
what is needed is the redefinition of the interfering process
from Definition 1. In the single-hop case one may use the
success transmission probabilities from [5], which are based on
simplifying independence assumptions, whereas the multi-hop
extension is not so straightforward. In the case of the slotted-
Aloha network with the capture effect [27], i.e., a transmission
can succeed in the presence of overlapping transmissions if
the SINR is sufficiently large. To account for this situation we
can change the expression of qN(t) from Definition 1, using
conditioning, to

q = 1−p
[
(1− p)

n−1
+
(
1− (1− p)

n−1
)
Pr (SINR ≥ ζ)

]
,

where ζ is the threshold, and we let N(t) = n. Also, 1−q can
be set to available success probabilities for packet reception
(see [27] for slotted-Aloha and [26] for CSMA/CD).

Let us now consider the aspect of network scheduling,
i.e., there is queueing at nodes 1, 2, . . . , k from Figure 2
due to serving multiple flows (so far we implicitly assumed
that only the flow [1 → k + 1] is being served, while the
rest of the nodes have only the role of interfering). Denote
by Ai(t) the aggregate of other flows, but [1 → k + 1],
at each node i. Then, the service curves from Eq. (20),
for the flow traversing the network, become S1(s, t) =∑t

u=s+1 X1(u)
∏m(2−ϕ)

i=2 Xi(u) − A1(s, t) using the leftover
theorem in network calculus [14]. In other words, A1(s, t) is
an additional high priority process in the service interpretation
from Figure 1.

Lastly, to fit Gupta-Kumar’s network model with n
nodes [18], in the model from Figure 2, we let m = log n
and k =

√
n. We must consider now that the nodes 1, 2, . . . , k

serve other flows, in addition to the flow shown in Figure 2.
Because of the uniform distribution of the n nodes in Gupta-
Kumar’s model, it follows that each node 1, 2, . . . , k is tran-
sited on average by

√
n/ log n flows; this is the same as the

average number of hops between two independently chosen
nodes. Combining this with the result from Eq. (26), it follows
that the throughput of the multi-hop flow from Figure 2 scales
according to Θ(1/

√
n log n). We point out that the recovery

of this result was possible by fixing the pair of nodes, given
the simplifying network scenario we treated in this section.

In principle, one may extend the analysis from this section
to asymmetric scenarios which would result in less concise
expressions on end-to-end throughputs and delays.

V. NUMERICAL RESULTS

We first validated the two density models from Subsec-
tions II-B1 and II-B2 by using two experimental datasets
gathered by the Haggle Project, referred to as Infocom05
and Infocom06 [19]; these are the most densely connected
empirical datasets publicly available to the research com-
munity. In Infocom05, 41 iMotes devices were distributed
to approximately 40 students attending the Infocom 2005
student workshop and in Infocom06 the number of participants
increased to 98. The number of internal contacts for the
two datasets are 22459 and 191336, respectively, whereas
the average number of contacts/pair/day are 4.6 and 6.7,
respectively. Previous works have used these traces to extract
important characteristics of human inter-contact times [8],
[22]. For several randomly selected nodes we plotted the
distribution of uninterrupted time spent by N(t) (the number
of neighbors at time t) in several states. For both datasets we
observed a geometric distribution which justifies the Markov
model from Subsection II-B1. Also, we observed a geometric
distribution in time for N(t), which suggests that the binomial
distribution, arising for the commonly used uniform node
placement distribution may not be suitable for modelling
networks with realistic mobility settings (note: the plots are
not shown here for lack of space).
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Fig. 3. In (a): cumulative throughput of Node 1 from Infocom05 in an
emulated mobile scenario, and with fitted Markov-modulated and memoryless
interfering processes. In (b): cumulative throughput for node 1 in Figure 2
with m = 10 (violation probability ε = 10−3)

Figure 3.(a) illustrates the accuracy of the non-asymptotic
throughput bounds from Theorem 1 by using simulation results
from the Infocom05 dataset. In this dataset, 41 nodes collected
contact data among themselves for four consecutive days
with time granularity 120 s. We interpolated the neighboring
information with time slot 10 s, such that the difference
between the number of neighbors in two consecutive slots is
at most one. Then we fitted the Markov-modulated interfering
process from Subsection II-B1 and computed its spectral
radius; also, from the stationary distribution of the number of
neighbors we fitted the memoryless interfering process from
Subsection II-B2. The figure shows the cumulative throughput
quantiles (ε = 10−3) of node 1 for the entire trace duration by
simulating slotted-Aloha for the emulated mobility trace, and



also the bound from Eq. (10) for the two fitted interfering
processes. We observe that the bound obtained from the
memoryless process is reasonably accurate; the other bound,
obtained from the Markov-modulated process, underestimates
the throughput because of the spectral radius upper bound
approximation from Eq. (7).

Figure 3.(b) illustrates the behavior of the multi-hop
throughput from Eq. (22) for an overlap fractions ϕ = .2 and
two numbers of hops k. We plot the cumulative throughput as
a function of time using Eq. (22), and by simulating slotted-
Aloha, for ε = 10−3. We observe that the time scale used
(105 slots) is insufficient to capture the independence of the
multi-hop throughput of the number of hops, as asymptotically
predicted in Eq. (26); this shows the limitations of asymptotic
results for throughput predictions over finite time scales. We
also observed (plots not shown here) that higher ϕ yields
larger throughput; thus, the number of nodes contending for
a channel has a slightly higher impact on the throughput than
the number of nodes correlating adjacent transmissions.

VI. CONCLUSIONS

In this paper we have opened a new perspective on the per-
formance analysis of multi-hop wireless networks. Concretely,
we have provided explicit bounds on throughput and delay
distributions, which hold not only asymptotically, as existing
results from the literature, but also account for finite network
sizes, time scales, random topologies, and broad classes of
arrivals. The obtained results can be immediately applied to
further understand the capacity and delay behavior in multi-
hop wireless networks, e.g., network capacity is fundamentally
influenced by randomness in network topology. In the future
we plan to use our methodology to evaluate new communi-
cation protocols, which, for instance, use different backoff
distributions than the exponential at the MAC layer and
various scheduling algorithms at the network layer. By making
such intrinsically complex and difficult problems analytically
tractable, we conclude that this paper brings a significant
contribution to connecting fundamental research and practice
in the field of multi-hop wireless networks.
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