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Stochastic Packet Loss Model to Evaluate QoE
Impairments

Oliver Hohlfeld

Abstract—The estimation of quality for real-time services
over telecommunication networks requires realistic models for
impairments and failures during transmission. We focus on the
classical Gilbert-Elliott model whose second-order statistics is
derived over arbitrary time-scales. The model is used to fit packet
loss processes of backbone and DVB-H traffic traces. The results
show that simple Markov models are appropriate to capture the
observed loss pattern and to discuss how such models can be used
to examine the quality degradations caused by packet losses.

I. INTRODUCTION

W ITH provisioning of broadband access for mass
market—even in wireless and mobile networks—

multimedia content, especially real-time streaming of high-
quality audio and video, is extensively viewed and exchanged
over the Internet. Quality of Experience (QoE) aspects, de-
scribing the service quality perceived by the user, is a vital
factor in ensuring customer satisfaction in today’s networks.
Creating frameworks for accessing quality degradations in
streamed video currently is investigated as a complex multi-
layered research topic, involving network traffic load, codec
functions and measures of user perception of video quality.

However, the transfer of real-time data for multimedia ser-
vices over the Internet and channels in heterogeneous packet
networks is subject to errors of various types, which will affect
the QoS and QoE. On wireless and mobile links temporary
and long lasting reductions in the available capacity frequently
occur and even in fixed and wired network sectors packets may
be dropped at routers and switches in phases of overload. Lost
information will affect the perceived quality by impairing the
multimedia content. The QoE degradation not only depends
on the amount of lost packets, but also on the semantic of the
lost information at the application layer.

The impact of packet loss on the user’s perception of real-
time services can be investigated starting from measurement
traces of traffic or generated by finite-state stochastic models,
which have been adapted to the characteristics observed in
the measurement and thus produce statistically similar traces.
Using model based generators for loss processes has several
advantages:
• the amount of necessary storage capacity is reduced

significantly from several gigabyte to a set of model
parameters,

• stochastic models usually include a set of parameters with
a clear interpretation, which can be adapted to meet the
demands of a considered scenario in which the model
is used (e.g. a certain packet loss rate) and makes them
more flexible than a measurement trace,

• the length of the generated sequence is independent of
the measurement trace used for training,

• stochastic models produce random but statistically con-
sistent sequences.

Both, using real data loss traces—e.g. captured in backbone
links—and model generated loss traces have their benefits. The
main disadvantage of using model generated loss traces is that
statistical properties may not fit to those of a measured trace,
as they are likely to be biased by model limitations.

Measurement traces show characteristics on multiple time-
scales. Thus, we derive the second-order statistics of finite
Markov models, to be used as a parameter estimation tech-
nique. This is used to adapt the model to the second-order
statistics of the amount of packet losses observed in a given
traffic trace on multiple time-scales by moment matching.

The present paper gives a brief introduction on finite
Markov models and discusses how these models can be used
in the study of QoE impacts on video streams. The aim is to
provide a generator for packet loss pattern to be used in the
estimation of the degradation in the Quality of Experience for
Internet services.

II. STOCHASTIC PACKET LOSS MODELS

Finite-state Markov chains are widely used to characterise
error processes in telecommunication systems and for per-
formance evaluation of coding or other measures for error
resilience [8], [11]. In this paper, we will use finite-state
models to describe the packet loss process found in backbone
measurements (wired channels) and DVB-H traces (wireless
channels). A discrete Markov chain with a set of M states
S = {S1, S2, · · · , SM} characterises the course of the process
with regard to the current state, which may change over time
at predefined events, e.g. packet arrivals, based on transition
probabilities. Each state is associated with different error or
packet loss behaviour. Let qt denote the current state at event
time t, t ∈ N0. Then the probabilities aij to change from state
qt−1 = i to qt = j are give in the transition matrix A with
coefficients

aij = P (qt = Sj |qt−1 = Si), 1 ≤ i, j ≤M,

where

aij ≥ 0;
M∑

j=1

aij = 1.

We restrict our considerations to irreducible and aperiodic
Markov chains, where each state can be reached from each
other with positive probability after a number of transitions
and steady state probabilities πk exist for finding the process
to sojourn a state in a long term perspective. The steady
state probabilities are invariant with regard to a transition
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with matrix A and thus can be computed from the system
of linear equations: πk =

∑M
j=1 πjajk, k = 1, · · · ,M and∑M

j=1 πj = 1. Finally, we define error or packet loss rates in
each state E = (e1, ..., eM ); 0 ≤ ej ≤ 1 for j ∈ [1,M ]
and the output of the process O(t) as a binary sequence
O(t) ∈ 0, 1 indicating an error or loss at an event with
O(t) = 1, whereas O(t) = 0 stands for error free events,
respectively. Thus we have P (O(t) = 1|qt = Sj)

def= ej .
Only in simple cases, e.g. for a 2-state Markov process with

e1 = 0 and e2 = 1, the current state can be recovered from the
output. The term Hidden Markov Models expresses that O(t)
in general leaves uncertainty about the corresponding states
S(t) of the Markov chain. A Markov process is completely
defined by the transition matrix A, the state specific error
rates E and initial state S0 or, more generally an initial state
distribution π0 = P (S0 = j). We continue with a brief
discussion of two state Markov models before the second-
order statistics of finite Markov models is derived in general.

A. Gilbert-Elliot: The Classical 2-State Markov Model for
Error Processes

In 1960, Gilbert [3] proposed a 2-state Markov chain to
characterise a burst-noise channel. The usual notation of the
Gilbert model distinguishes at first a good (G) and secondly
a bad (B) state with different loss rates eG = 1 − k < eB =
1−h. Gilbert [3] started with the special case of an error-free
good state (k = 1) and left the extension to include losses
generated in both states to Elliott [1]. Dwell times in the states
are geometrically distributed with mean 1/p for the good and
1/r for the bad state, where p and r are the probabilities to
change from the good state to the bad and vice versa. The
Gilbert-Elliott 2-state Markov approach as depicted in Figure 1
is widely used for describing error patterns in transmission
channels [12], [8] and for analysing the efficiency of coding
for error detection and correction. For applications in data loss
processes, we interpret an event as the arrival of a packet and
an error as a packet loss. Thus, the transition matrix and the
steady state probabilities are

A =
(

1− p p
r 1− r

)
; πG =

r

p+ r
; πB =

p

p+ r

with a total error rate e = πGeG + πBeB = r(1−k)+p(1−h)
p+r .

G B

p

1−p

r

1−r
1−h1−k

Fig. 1. The 2-state Markov model introduced by Gilbert and Elliott

III. VARIANCE OF THE ERROR PROCESS OVER MULTIPLE
TIME-SCALES

Second-order statistics in multiple time-scales are a stan-
dard approach to capture and to describe traffic variability

including long-range dependencies and self-similarity [10],
[7]. Following this trend, we next derive the second-order
statistics of the number of packet losses over a range of
relevant time frames. Based on our work in [4], [5], where
we discussed the derivation in-depth, we will briefly discuss
the concrete result for the Gilbert-Elliott model. We discussed
the general eigenvalue solution for N -state Markov models
in [6]. Although Markov models do not exhibit self-similar
properties, they have been successfully adapted to self-similar
traffic [2], [9] and are still popular since they often lead to
simple analytical treatment.

In order to capture a packet loss process generated by an
M -state Markov model, we can set up recursive equations for
the distribution function of losses in a considered sequence of
packets. Let GN (z) (BN (z)) denote the generating function
X(z) def=

∑
i P{X = i}zi for the number of packet drops in

a sequence of N packet arrivals, leaving the Markov chain in
the last step at state G (B). Iterative relationships can be set
up to compute GN+1(z) from GN (z), taking into account the
state transitions and factors (k+(1−k)z) and (h+(1−h)z)
for possible drop of the (N+1)-th packet with state dependent
probabilities 1− k and 1− h, respectively:

GN+1(z) = (1−p)(k+(1−k)z)GN (z)+r(h+(1−h)z)BN (z)

BN+1(z) = p(k+(1−k)z)GN (z)+(1−r)(h+(1−h)z)BN (z)

Starting in steady state conditions, we initialise G0(z) =
r/(p+r) and B0(z) = p/(p+r). The corresponding distribu-
tions GN (z), BN (z) remain defective GN (1) = r/(p + r)
and BN (1) = p/(p + r) ∀N ∈ N. We finally evalu-
ate complete distributions given by GN (z) + BN (z), where
GN (1) +BN (1) = 1 independent of the final state.

The k-th moment can be derived from the generat-
ing function by considering the k-th derivative: E[Xk] =

∂
∂zkX(z)|z=1. The mean, given by µG

N = G′N (1) and
µB

N = B′N (1), and the second moment E(X2) are sufficient
to derive the second-order statistics involving the first and
second derivative of the generating functions. Due to the
symmetry of both states G and B, GN (z) can be obtained
from BN (z) by swapping the parameters p ↔ r and h ↔ k
and vice versa. Thus, GN (p, r, h, k, z) = BN (r, p, k, h, z) and
µG

N (p, r, h, k) = µB
N (r, p, k, h).

The second-order statistics—expressed by the coefficient of
variation cv = σ/µ—of the number of packet losses in a
sequence of length N generated by the Gilbert-Elliott model
is

cv(N) =
1√
N

√
hp+ kr

ω
+ α

2pr(1− p− r)(h− k)2
ω2(p+ r)

(1)

with

α
def=
(

1− 1− (1− p− r)N

N(p+ r)

)
; ω

def= (1−h)p+(1−k)r

The solution is comprehensible enough to interpret the in-
fluence of the model parameters and leads to a new param-
eter adaptation technique, where model parameters can be
obtained by numerically fitting (1) to the empirical cv-curve
of a particular trace. Note that the evaluation of the term
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1 − (1 − p − r)N may cause numerical instability for small
p, r, which can be improved by implementing the equivalent
form 1− (1− p− r)N = 1− eln(1−p−r)·N .

IV. EVALUATION

The following section will discuss the evaluation of the
proposed parameter adaptation technique based on second-
order statistics in multiple time-scales for 2-state Markov
models and compares the results to classical fitting methods.

The evaluation of the trained 2-state Markov models using
the coefficient of variation cv(N) is shown in Figure 2 for
a backbone trace and in Figure 3 for a DVB-H trace. The
Poisson process provides a linear lower bound for cv(N) =
cv(1)/

√
N without any autocorrelation.

The parameters of the Gilbert model and its simplified
version for k = 1, h = 0 have been estimated from the given
loss traces using the traditional methods described in [3] and
[12]. Moreover, the simplified Gilbert model with only two
parameters and the Gilbert-Elliott model have been trained
based on the second-order statistics over multiple time-scales
N ∈ [1, 105] (cf. Section III), as shown in Figure 2. The model
parameters were estimated by fitting the coefficient of variation
curve to the one obtained from the corresponding trace using
the Levenberg-Marquardt algorithm for numeric optimisation
of non-linear functions.
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Fig. 2. Evaluation of the trained 2-state Markov models using the coefficient
of variation cv(N) for backbone traffic with a mean packet loss rate of 1%

Considering the coefficient of variation curve as variance-
time plot [7], the Hurst parameter can be obtained by fitting
cv(1) · NH−1 to the cv(N) curve for N ∈ [1, 105]. For both
traces, a Hurst parameter H ≈ 0.8 has been found, as can be
seen in Figure 2. The loss process of the considered traces
shows a faster decay than self-similar processes for a time-
scale of N > 103 packets, suggesting that Markov models are
appropriate to capture this behaviour.

The performance of the fitted models can be expressed by
the degree to which they replicate the empirical cv-curve of
the considered trace. The proposed fitting technique shows
a closer fit than classical methods. However, when we look
at the distribution of the length of packet losses in a series,
then the classical fitting procedures seem to be in favour, as
experienced from first evaluations. This is not unexpected,
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Fig. 3. Evaluation of the trained 2-state Markov models using the coefficient
of variation cv(N) for DVB-H traffic with a mean packet loss rate of 1.8%

since they are closer related to error burst lengths whereas
the second order statistics can include long-range correlation.

V. VIDEO QUALITY OF EXPERIENCE

In the following section, we discuss the impacts of packet
loss on video quality metrics. We discussed related work in
[5] in detail. The integration of the previous packet layer loss
models into a common framework with the video transmission
and impairments visible to a viewer are for further study in
an ongoing project.

A. Impairments at the Video Layer caused by Packed Loss

We focus mainly on the H.264/AVC ((MPEG-4 Part 10)
video coding standard. In video compression, sequences are
decomposed into still pictures (frames) which are grouped into
a Group of Pictures (GoP). Frames are segmented into macro
blocks—usually of size 16x16 pels—and organized into groups
of blocks called slice. Macro blocks are typically positioned
in scan-line order, but due to Flexible Macroblock Ordering
in H.264 arbitrary order is also possible. A frame is coded in
one of three modes: I frames contain only intra coded macro
blocks, P frames can contain intra or predicted macro blocks
and B frames can also contain bidirectional predicted macro
blocks. When using prediction, the displacement of a macro
block is expressed as motion vector relative to the reference
frame.

During the decoding process, the decoder may have to
cope with errors due to packet loss, where the concrete error
concealment strategy is decoder dependent. When only a small
fraction of the slice is corrupted, the decoder often is not
aware of the concrete error position and thus may discard the
slice. The perceived visual quality of an erroneous received
but decoded and displayed slice may be worse than in case
of discarding and copying the slice from a previous frame.
Information introduced by copying from a previous slice may
not always be noticeable by a viewer. An example may be
comic strips which usually have a very static background and
thus losing a slice that holds only background information is
often unnoticed if the lost data is copied from the last slice.
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As most currently used encoders are not aware of the
underlying transport protocol, slices are typically larger than
the payload of a single IP packet. When MPEG2 transport
streams (TS) are used to packetize the video data into IP
packets, slice boundaries are usually inside an IP packet, as
MPEG-2 TS considers video data as endless bitstream. Thus,
losing such a packet can discard two slices at once.

Losing a parameter set due to packet loss will have a severe
effect on the decoding process. Thus, they may be transmitted
out-of-band or in-band but periodically, e.g. with each GoP,
or prioritized using differentiated services.

B. Markov Models as Basis for Subjective Evaluations
Finite Markov models can be used as a basis for subjective

video quality evaluations where subjects are asked to rate
given video sequences using the Mean Opinion Score (MOS),
as currently conducted at T-Labs Berlin for high-definition
video sequences. During the test preparation, H.264 videos
are packetised using an MPEG2 transport stream (TS) and
impaired with a Markov model. The impaired video sequence
is rated by the subject during test. The advantage of Markov
models is their flexibility to be adapted to arbitrary loss rates
and loss burst lengths, such that different impairments can be
studied.

C. Objective Evaluation of Impaired Video Sequences
The analytical study of loss pattern is supplemented with

a qualitative investigation of their effects on QoE metrics
for video transmission in [5]. In general, impairments of
video sequences are sensitive to different assumptions on
loss processes yielding different reaction in coding of slices
and frames, which stresses the importance of referring to the
most relevant pattern. A comparison of 2400 video sequences,
impaired using the proposed packet loss generator, led to
strong evidence that uniform packet losses produce a larger
distortion than busty packet losses at the same and sufficiently
high loss-rate, since the former affect more frames on the video
coding layers. Moreover, the results suggest that impairments
at the video layer are affected by the applied parameter
estimation technique.

VI. CONCLUSION

Quality of Experience aspects are a vital factor in ensuring
customer satisfaction in today’s network services. In order
to study quality degradations in video streams caused by
packet loss, a Markovian error pattern generator can be used
to simulate physical channels of various type. We derived
the second-order statistics for the distribution of the number
of lost packets over multiple time-scales, which in general
can be recursively determined for increasing time frames and
via explicit terms for the Gilbert-Elliott model. The fitting
procedure leads to a closer match in multiple time-scales
than classical methods. The proposed approach gives more
flexibility to include information from different time-scales
enabling a simple and useful fit for long traces of traffic and
packet loss processes. We discussed the impact of packet loss
on streamed video and showed how Markovian error pattern
generators can be used to study quality degradations.
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